If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5x-135=0
a = 1; b = 5; c = -135;
Δ = b2-4ac
Δ = 52-4·1·(-135)
Δ = 565
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{565}}{2*1}=\frac{-5-\sqrt{565}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{565}}{2*1}=\frac{-5+\sqrt{565}}{2} $
| 3(3x+2)/2+2(4x-8/5)=0 | | x+5.10x=600000 | | x^2-64x+448=0 | | 10+17w=-6+15w | | 9+16x-1=9x+92-5x | | -82=6u-12u-17 | | −8(4−x)=4/5(x+50) | | 3x+18x+5×-2=180 | | 3x+18+5×-2=180 | | 1/10(x+33)=−2(5−x) | | -5(x^2-40x-1950)=0 | | y=100+0.8y(-140)+300-40(4.2)+140 | | y=100+0.8(Y-140)+300-40(4.2)+140 | | x-49=7(2x+3)-5 | | -3(x+2)+13=12-4x | | 18=-w/32+20= | | 2q+18=7q-2= | | 7x=20=x-10 | | 3-(n+5)=12 | | 5y-2y-1=-2 | | (x-5)/3+(5)/3=(-x)/7 | | 5x+-14=180 | | -5x+8-3(x-1)=-(4x-4)-3x+3 | | 13.9=2.52z | | 4-13+x=65 | | 13.9=2.53z | | X^3-2x^2X^3-2x^2-9=0 | | 3k^+16k-75=0 | | x-1/15=4/5 | | 89p=3 | | 4m-12=12+16 | | x=12+× |